A Rocket Scientist’s Analysis of the Santa Claus legend:
1. There are approximately two billion children (persons under 18) in the world, however since Santa does not visit children of Muslim, Hindu, Jewish or Buddhist religions, this reduces the workload for Christmas night to 15% of the total, or 378 million (according to the population reference bureau). At an average (census) rate of 3.5 children per household, that comes to 108 million homes, presuming that there is at least one good child in each.
2. Santa has 31 hours of Christmas to work with, thanks to the different time zones and the rotation of the earth, assuming he travels east to west (which seems logical). This works out to 967.7 visits per second. This is to say, that for every Christian household with a good child, Santa has around 1/1000 of a second to park the sleigh, hop out, jump down the chimney, fill the stockings, distribute the remaining presents under the tree, eat whatever snacks have been left for him, get back up the chimney, jump into the sleigh and get on to the next house. Assuming that each of these 108 million stops is evenly distributed around the earth (which of course, we know to be false, but will accept for the purpose of our calculations). We are talking about 1.25 Km per household, a total of 120.8 million Km, not counting bathroom stops or breaks. This means Santa's sleigh is moving at 1040 Km per second … 3,000 times the speed of sound or 0.346% of the speed of light. For purposes of comparison, the fastest man-made vehicle, the Ulysses space probe, moves at a mere 43.8 Km per second, and a conventional reindeer can run (at best) 25 Km per hour.
3. The payload of the sleigh adds another interesting element. Assuming that each child gets nothing more than a medium Lego set (two pounds or nearly 1 kG), the sleigh is carrying over 500 thousand tons, not counting Santa himself. On land, a conventional reindeer can pull no more than 300 pounds, and even granting that the "flying" reindeer could pull ten times the normal amount, the job can't be done with eight or even nine of them … Santa would need 360,000 of them. This increases the payload, not counting the weight of the sleigh, another 54,000 tons, or roughly seven times the weight of the Queen Elizabeth (the ship, not the monarch).
4. 600,000 tons traveling at 1040 Km per second creates enormous air resistance....this would heat up the lead reindeer in the same fashion as a space shuttle re-entering the earth's atmosphere. The lead pair of reindeer would absorb 14.3 quintillion joules of energy per second each. In short, they would burst into flames almost instantaneously, exposing the reindeer behind them and creating deafening sonic booms in their wake. The entire reindeer team would be vaporized within 4.26 thousandths of a second, or right about the time Santa reached the fifth house on his trip. Not that it matters, however, since Santa, as a result of accelerating from a dead stop to 1040 km/sec in .001 seconds, would be subjected to centrifugal forces of 17,500 G's. A 250 pound Santa (which seems ludicrously slim) would be pinned to the back of the sleigh by 4,315,015 pounds of force, instantly crushing his bones and organs and reducing him to a quivering blob of reddish pink (HO HO HO!) goo.
5. Therefore I conclude, if Santa did exist in the past, he's very dead now.
1. There are approximately two billion children (persons under 18) in the world, however since Santa does not visit children of Muslim, Hindu, Jewish or Buddhist religions, this reduces the workload for Christmas night to 15% of the total, or 378 million (according to the population reference bureau). At an average (census) rate of 3.5 children per household, that comes to 108 million homes, presuming that there is at least one good child in each.
2. Santa has 31 hours of Christmas to work with, thanks to the different time zones and the rotation of the earth, assuming he travels east to west (which seems logical). This works out to 967.7 visits per second. This is to say, that for every Christian household with a good child, Santa has around 1/1000 of a second to park the sleigh, hop out, jump down the chimney, fill the stockings, distribute the remaining presents under the tree, eat whatever snacks have been left for him, get back up the chimney, jump into the sleigh and get on to the next house. Assuming that each of these 108 million stops is evenly distributed around the earth (which of course, we know to be false, but will accept for the purpose of our calculations). We are talking about 1.25 Km per household, a total of 120.8 million Km, not counting bathroom stops or breaks. This means Santa's sleigh is moving at 1040 Km per second … 3,000 times the speed of sound or 0.346% of the speed of light. For purposes of comparison, the fastest man-made vehicle, the Ulysses space probe, moves at a mere 43.8 Km per second, and a conventional reindeer can run (at best) 25 Km per hour.
3. The payload of the sleigh adds another interesting element. Assuming that each child gets nothing more than a medium Lego set (two pounds or nearly 1 kG), the sleigh is carrying over 500 thousand tons, not counting Santa himself. On land, a conventional reindeer can pull no more than 300 pounds, and even granting that the "flying" reindeer could pull ten times the normal amount, the job can't be done with eight or even nine of them … Santa would need 360,000 of them. This increases the payload, not counting the weight of the sleigh, another 54,000 tons, or roughly seven times the weight of the Queen Elizabeth (the ship, not the monarch).
4. 600,000 tons traveling at 1040 Km per second creates enormous air resistance....this would heat up the lead reindeer in the same fashion as a space shuttle re-entering the earth's atmosphere. The lead pair of reindeer would absorb 14.3 quintillion joules of energy per second each. In short, they would burst into flames almost instantaneously, exposing the reindeer behind them and creating deafening sonic booms in their wake. The entire reindeer team would be vaporized within 4.26 thousandths of a second, or right about the time Santa reached the fifth house on his trip. Not that it matters, however, since Santa, as a result of accelerating from a dead stop to 1040 km/sec in .001 seconds, would be subjected to centrifugal forces of 17,500 G's. A 250 pound Santa (which seems ludicrously slim) would be pinned to the back of the sleigh by 4,315,015 pounds of force, instantly crushing his bones and organs and reducing him to a quivering blob of reddish pink (HO HO HO!) goo.
5. Therefore I conclude, if Santa did exist in the past, he's very dead now.
Comment